JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-I (Honours) (CBCS)

Name of Faculty Members	Topic (From 19 th September 2022 to 4 th February 2023)		Topic (From 19 th September 2022 to 4 th February 2023)
	C1(H) Unit-III: Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics.	P U	C1(H) Unit-III: Geometry Spheres. Cylindrical surfaces. Central conicoids, paraboloids.Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
Sri. S. Sarkar Assistant Professor Head of The Department	C2(H) Unit-III: Algebra Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence.	J A	C2(H) Unit- IV: Algebra Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.
	GE-1Unit-III:Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics.	V A C A	GE-1Unit-III:Geometry Spheres. Cylindrical surfaces. Central conicoids, paraboloids.Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
	C1(H) Unit-I: Calculus Hyperbolic functions, higher order derivatives, Curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.Curve tracing in Cartesian coordinates, tracing polar Coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	T I O N	C1(H) Unit-II: Calculus Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sinnxdx$, $\int cosnxdx$, $\int tannxdx$, $\int sec nxdx$, $\int (log x)^n dx$, $\int sin^n x sin^m x dx$, Parametric equations, parameterizing a curve. Arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.

Sri. A. De Assistant Professor	GE1(H) Unit-I: Calculus Hyperbolic functions, higher order derivatives, Curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences. Curve tracing in Cartesian coordinates, tracing polar Coordinates of standard curves,	\mathbf{P}
	L'Hospital's rule, applications in business, economics and life sciences. C1 (H) Unit-IV: Differential Equation	Uconics.JC1(H)Unit-IV: DifferentialAEquationExact differential equations and
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation.	integrating factors. Separable equations and equations reducible this form, linear equation and Bernoulli equations, special integrating factors and transformations.
Sri. S. Roy Assistant Professor	C2(H) Unit-I: Algebra Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Descartes rule of signs, cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Theory of equations: Relation between roots and coefficients, transformation of equation.	 C2(H) Unit-II: Algebra Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set. Well-ordering property of positive integers, division algorithm, divisibility and Euclidean algorithm. Congruence relation between integers. T I I I I
	GE-1 Unit-IV: Differential Equation Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation.	O NGE-1Unit-IV: Differential Equation Exact differential equations and integrating factors. Separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.
		Internal Assessment: 1 st week of December 2022 PTM-2 nd week of December 2022 Students' Seminar-2 nd week of January 2023

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-II (Honours) (CBCS)

Name of the Faculty Members	Topics (From 20 th March 2023 to 28 th July 2023)
	C4(H) Unit-I: Differential Equations
	Lipschitz condition and Picard's Theorem (Statement only).
	General solution of homogeneous equation of second order,
	principle of super position for homogeneous equation,
	Wronskian: its properties and applications, Linear
	homogeneous and non- homogeneous equations of higher
	order with constant coefficients, Euler's equation, method of
	Undetermined coefficients, method of variation of parameters.
	C4(H)Unit-II: Differential Equations
Sri. S. Sarkar	Systems of linear differential equations, types of linear
Assistant Professor	systems, differential operators, an operator method for linear
Head of The Department	systems with constant coefficients,
	Basic Theory of linear systems in normal form, homogeneous
	linear systems with constant coefficients: Two Equations in
	two unknown functions.
	C4(H)Unit-III: Differential Equations
	Equilibrium points, Interpretation of the phase plane Power
	Series solution of a differential equation bout an ordinary
	point, solution about a regular singular point.
	C3(H)Unit-I: Real Analysis
	Review of algebraic and order properties of R, ε-
	neighborhood of a point in R. Idea of countable sets,
	uncountable sets and uncountability of R. Bounded above
	sets, bounded below sets, bounded sets, unbounded sets.
	Suprema and infima. Completeness property of R and its
	equivalent properties. The Archimedean property, density of
	rational (and Irrational) numbers in R, intervals. Limit points
	of a set, isolated points, open set, closed set, derived set,
	illustrations of Bolzano-Weierstrass theorem for sets,
	compact Sets in R, Heine-Borel Theorem.
	C3(H)Unit-II: Real Analysis
Sri. A. De	Sequences, bounded sequence, convergent sequence, limit of
Assistant professor	a sequence, lim inf, lim sup. Limit theorems. Monotone
Assistant professor	sequences, monotone convergence theorem. Subsequences,
	divergence criteria. Monotone subsequence theorem
	•
	(statement only), Bolzano Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence criterion.
	C3(H)Unit-III: Real Analysis
	Infinite series, convergence and divergence of infinite series,
	Cauchy criterion, tests for convergence: comparison test, limit
	comparison test, ratio test, Cauchy's nth root test, integral test.

 Alternating series, Leibniz test. Absolute and conditional convergence. GE-2Unit-III: Algebra Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. GE-2Unit-IV:Algebra Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.
C4(H)Unit-IV: Vector Calculus Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. GE-2Unit-I:Algebra Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, transformation of equation, Descartes rule of signs, cubic and biquadratic equation. Inequality: The inequality involving AM≥GM≥HM, Cauchy-Schwartz inequality. Inequality: The inequality involving AM≥GM≥HM, Cauchy-Schwartz inequality .GE-2Unit-II:Algebra Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set. Well-ordering property of positive integers, division algorithm, divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical induction, statement of Fundamental Theorem of Arithmetic. Internal Assessment: 2 nd Week of June 2023 PTM-3 rd Week of June 2023

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-III (Honours) (CBCS)

Sri. S. Sarkar Assistant Professor Head Of The Department	C7(H): Numerical Methods:- Unit 1 Algorithms. Convergence Errors: relative, absolute. Round off. Truncation. Bisection method, Newton's method, secant method, Regula-falsi method, fixed point iteration, Newton- Raphson method Rate of convergence of these methods.	 C7(H): Numerical Methods:- Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory Forward and backward difference interpolation. Numerical differentiation: Methods based on interpolations, methods based on finite differences. Unit 5 Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rdrule, Simpsons 3/8thrule, Weddle's rule, Boole's Rule. midpoint rule, Composite trapezoidal rule, composite Simpson's 1/3rd rule, Gauss quadrature formula. The algebraic eigen Value problem: Power method. Approximation: Least square Polynomial approximation. Euler's method, the modified Euler method, Runge- Kutta Methods of orders two and four.
	SEC-1(H):Logic and Sets:- Unit 1 Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.	 SEC-1(H):Logic and Sets:- Unit 2 Sets, subsets, set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principal. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set. Unit 3 Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Relation: Product set. Composition of relations, types of relations, partitions, equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations.

	C5(H):Theory of Real		C5(H):Theory of Real Functions :-
	Functions :-		Unit 2
	Unit 1		Differentiability of a function at a point and in an
	Limits of functions(ε-δ		interval, Caratheodory's theorem, algebra of
	approach), sequential		differentiable functions. Relative extrema,
			,
	criterion for limits,		interior extremum theorem. Rolle's theorem. Mean
	divergence criteria.		value theorem, intermediate value property of
Sri. A. De	Limit theorems, one		derivatives, Darboux's theorem. Applications of mean
Assistant Professor	sided limits. Infinite		value theorem to inequalities and approximation of
	limits and limits at		polynomials.
	infinity. Continuous		Unit 3
	functions, sequential		Cauchy's mean value theorem. Taylor's theorem with
	criterion for continuity	P	Lagrange's form of remainder, Taylor's theorem with
	and discontinuity.	⊥	Cauchy's form of remainder,
	Algebra of continuous	U	Application of Taylor's theorem to convex functions,
	functions. Continuous		relative extrema. Taylor's series and
	functions on an interval,	Т	Maclaurin's series expansions of exponential and
	intermediate value	J	trigonometric functions, $\ln(1+x)$, $1/(ax + b)$ and $(x+1)n$.
	theorem, location of		Application of Taylor's theorem to inequalities.
	roots theorem,	A	Introduction to Metric Space:-
	preservation of intervals		Unit 4
	theorem. Uniform		Metric spaces: Definition and examples. Open and
	continuity, non-uniform		closed balls, neighborhood, open set, interior of a set.
	continuity criteria,		Limit point of a set, closed set, diameter of a set,
	uniform continuity		subspaces, dense sets, separable spaces.
	theorem.		subspaces, dense sets, separable spaces.
	theorem.	T 7	
	C6(H):Group Theory:-	V	C6(H):Group Theory:-
	Unit 1		Unit 3
	Symmetries of a square,	A	Properties of cyclic groups, classification of sub groups
	dihedral groups,		of cyclic groups. Cycle notation for permutations,
	definition and examples		properties of permutations, even and odd permutations,
	of groups including		alternating group,
	permutation groups and	$ \mathbf{A} $	properties of cosets, Lagrange's theorem and
	quaternion groups		consequences including Fermat's Little theorem.
	(through	T	Unit 4
Sri. S. Roy	matrices), elementary	-	External direct product of a finite number of groups,
Assistant Professor	properties of groups.		normal subgroups, factor groups, Cauchy's theorem
	Unit 2		for finite abelian groups.
	Subgroups and examples		Unit 5
	of subgroups,		Group homomorphisms, properties of homomorphisms,
	centralizer, normalizer,	N	Cayley's theorem, properties of isomorphisms. First,
	center of a group,	_ `	Second and Third isomorphism theorems.
	product of two		-
	subgroups.		
	sucgroups		
		1	PTM-2 nd week of December 2022
			Internal Assessment: 2 nd week of December 2022
			Students' Seminar-2 nd week of January 2023

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-IV (Honours) (CBCS)

Name of the Faculty Members	Topics(From 28 th February 2023 to 9 th July 2023)
Faculty Members	C10(H):Ring Theory and Linear Algebra Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals. Unit 2
	Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients. Unit 3
Sri. S. Sarkar Assistant Professor Head Of The Department	Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces. Unit 4
	Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.
	SEC-2(H):Graph Theory
	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bipartite graphs isomorphism of graphs. Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph, Unit 3
	Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.

	C8(H):Riemann Integration and Series of Function	
	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two definitions. Riemann integrability of monotone and continuous functions, properties of the Riemann integral; definition and	
	integrability of piecewise continuous and monotone functions.	
Sri. A. De	Intermediate Value theorem for Integrals; Fundamental theorem of Integral Calculus.	
Assistant professor	Unit 2	
-	Improper integrals. Convergence of Beta and Gamma functions. Unit 3	
	Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions;	
	Theorems on the continuity and derivability of the sum function of a	
	series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	
	Unit 4	
	Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's	
	condition .Examples of Fourier expansions and summation results for series.	
	Unit 5	
	Powerseries, radius of	
	convergence, Cauchy Hadamard	
	theorem. Differentiation and	
	integration of power series;	
	Abel's theorem; Weierstrass approximation theorem.	

	C9(H):Multivariate Calculus
Sri. S. Roy Assistant Professor	Unit 1 Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems Unit 2
	Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double integrals and triple integrals. Unit 3
	Definition of vector field, divergence and curl. Line integrals, applications of line integrals: mass and work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4
	Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem.
	Internal Assessment: 3rd Week of May 2023 PTM-1 st Week of June 2023

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-V (Honours) (CBCS)

	Topic(16 th August 2022 to 23 rd December 2023)		
Name of the Faculty Members	Topic(16th August 2022 to 23rd December 2023) DSE-1(H):Linear Programming Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, Two-phase method. Big-M method and their comparison. Unit 2 Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual. problem and its mathematical formulation ,Northwest-Corner method, least cost Method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem. DSE-2(H):Probability and Statistics Unit 1 Sample space, probability axioms, real random variables(discrete and continuous),cumulative Distribution function, probability mass/density functions, mathematical expectation, moments, Moment generating function, charact	P U J A V A C A TI O N	Topic(16 th August 2022 to 23 rd December2023) DSE-1(H):Linear Programming Unit 3 Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure linear programming solution of games. DSE-2(H):Probability and Statistics Unit 3 Chebyshev's inequality, Statement and interpretation of (weak)law of large numbers and strong law of large numbers. Central limit theorem for independent and identically distributed random variables with finite variance ,Markov chains, Chapman-Kolmogorov equations, classification of states.
	Moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential. Unit 2 Joint cumulative distribution function and its	Ν	and strong law of large numbers. Central limit theorem for independent and identically distributed random variables with finite variance ,Markov chains, Chapman-Kolmogorov equations, classification of
	properties, joint probability density functions, Marginal and conditional distributions, Expectation of function of two random variables, Conditional expectations, independent random variables, bivariate normal distribution, Correlation coefficient, joint moment generating function(jmgf)and calculation of covariance (from jmgf),linear regression for two variables.		states. Unit 4 Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis.

Sri. S. Roy Assistant Professor	C12(H):Group Theory II Unit 1 Automorphism, inner automorphism, Automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties. Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental theorem of finite abelian groups. Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index	$\begin{array}{c c} C12(H): Group Theory II \\ Unit 4 \\ Groups acting on themselves \\ by conjugation, class equation \\ and consequences, conjugacy \\ in Sn, p-groups, Sylow's \\ theorems and consequences, \\ Cauchy's theorem, Simplicity \\ of An for n \ge 5, non-simplicity tests. \\ \hline P \\ U \\ J \\ \end{array}$
Sri. A. De Assistant Professor	theorem. C11(H):Partial Differential Equations& Applications Unit 1 Partial differential equations –Basic concepts and definitions. Mathematical problems. First-order equations: classification, construction and geometrical interpretation. Method of Characteristics for obtaining general solution of quasilinear equations. Canonical forms of first- order linear equations. Method of separation of variables for solving first order partial differential equations. Unit 2 Derivation of heat equation, wave equation and Laplace equation. Classification of second order Linear equations as hyperbolic, parabolic or elliptic. Reduction of second order linear equations to canonical forms. Unit 3 The Cauchy problem, Cauchy-Kowalewskaya theorem, Cauchy problem of an infinite string. Initial boundary value problems. Semi-infinite string with a fixed end, semi-infinite string with a free end. Equations. Non- homogeneous Boundary conditions. Non- homogeneous Boundary conditions.	AC11(H):Partial Differential Equations & Applications Unit 3 Method of separation of variables, solving the vibrating string problem. Solving the heat conduction problemVACUnit 4 Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and Planetary motion, Kepler's Second law.PTM-2nd week of December 2022 Internal Assessment: 1st week of December 2022PTM-2nd week of December 2022 Students' Seminar-2nd week of December 2022

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-VI (Honours) (CBCS)

Name of the	Topics(From 6 th February 2023 to 14 th June 2023)
Faculty Members	
	C14(H):Ring Theory and Linear Algebra II
	Unit 1 Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.
Sri. S. Sarkar Assistant Professor	 Unit 2 Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms. Unit 3 Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least squares approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem.
	DSE-4:Mathematical Modelling
	Unit 1 Power series solution of Bessel's equation and Legendre's equation, Laplace transform and inverse transform, application to initial value problem up to second order.
	Unit 2 Monte Carlo simulation modelling: simulating deterministic behavior (area under a curve, volume under a surface), generating random numbers: middle square method, linear congruence, queuing models: harbor system, morning rush hour, Over view of optimization modelling. Linear programming model: geometric solution algebraic solution, simplex method, sensitivity analysis

	C13(H):Metric Spaces		
Unit 1			
	Metric spaces: sequences in metrics paces, Cauchy sequences. Complete		
	metric spaces, Cantor's theorem.		
Sri. A. De Assistant professor			
	Goursat theorem, Cauchy integral formula. Unit 5		
	Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples.		
	Unit 6		
	Laurent series and its examples, absolute and uniform convergence of power series.		

	DSE-3(H):Number Theory Unit 1 Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues. Chinese remainder theorem, Fermat's little theorem, Wilson's theorem.
Sri. S. Roy Assistant Professor	Unit 2 Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler'sphi-function, Euler'stheorem, reduced set of residues, some properties of Euler's phi-function.
	Unit 3 Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's Last theorem.
	Internal Assessment: 1 st Week of May 20223 PTM-2 nd Week of May 2023

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-I (General) (CBCS)

Name of Faculty Members	Topic (From 19 th September 2022 to 4 th February 2023)	P	Topic (From 19 th September 2022 to 4 th February 2023)
Sri. A. De Assistant Professor	DSC-1A(CC-1):Differential Calculus Limit and Continuity (ϵ and δ definition), Types of discontinuities, Differentiability of functions,		DSC-1A(CC-1): Differentia Calculus Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions. Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.
Sri. S. Roy Assistant Professor	DSC-1A(CC-1):Differential Calculus Parametric representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in polar coordinates.	C A T I O N	DSC-1A(CC-1)Differential Calculus Rolle's theorem, Mean Value theorems, Lagrange and cauchy theorems. Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Power series and its convergences. Taylor's series, Maclaurin's series of sin x, cos x, ex, log(l+x), (l+x)m, Maxima and Minima, Indeterminate forms.
			Internal Assessment: 1 st week of December 2022 PTM-2 nd week of December 2022 Students' Seminar-2 nd week of January 2023

JHARGRAM RAJ COLLEGE DEPARTMENTOFMATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-II (General) (CBCS)

Name of the Faculty Members	Topics (From 20 th March 2023 to 28 th July 2023)	
Sri. S. Roy Assistant Professor	DSC-1B(CC-2):Differential Equations First order exact differential equations. Integrating factors, rules to find an integrating factor. First order higher degree Equations solvable for x,y,p. Methods for solving higher- order differential equations. Basic theory of linear differential equations, Wronskian, and its properties. Solving A differential equation by reducing its order. Linear Homogenous equations with constant coefficients, Linear non-homogenous equations, The method of variation of parameters, The Cauchy-Euler equation, Simultaneous Differential equations, Total differential equations. Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations, Linear partial differential equation of first order, Lagrange's method, Charpit's method. Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.	
Internal Assessment: 2 nd Week of June 2023 PTM-3 rd Week of June 2023		

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-III (General) (CBCS)

Name of Faculty Members	Topics (From 9th September2022 to 21stJanuary 2023)		Topics (From 9 th September 2022 to 21 st January 2023)
Sri. S. Sarkar Assistant professor	DSC-1C(G):Real Analysis Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano- Weierstrass theorem.	P U J A V A C	DSC-1C(G): Real Analysis Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem monotone sequences and their convergence (monotone convergence theorem without proof).Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof).Definition and examples of absolute and conditional Convergence Series. Sequences and series of functions, Pointwise and uniform convergence. μ-test, M-test, Statements of the results about uniform convergence and integrability and differentiability of functions, Power series and radius of convergence.
Sri. S. Roy Assistant professor	SEC-I(G):Theory of Equations General properties of polynomials, Graphical representation of polynomials, maximum and minimum values of a polynomial,	A T I O N	SEC-I(G):Theory of Equations General properties of equations, Descarte's rule of signs positive and negative rule, Relation between the roots and the coefficients of equations. Symmetric functions, Applications of symmetric function of the roots.Transformation of equations. Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic and biquadratic equations. Properties of the derived functions. PTM-2 nd week of December 2022 Internal Assessment: 2 nd week of December 2023

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-IV (General) (CBCS)

Name of the Faculty Members	Topics(From 28 th February 2023 to 9 th July 2023)	
Dr. A. De Assistant Professor	SEC-2(G):Integral Calculus Integration by Partial fractions, integration of rational and irrational functions. Properties of definite integrals. Reduction formulae for integrals of rational, trigonometric, exponential and logarithmic functions and of their combinations. Evaluation of areas and lengths of curves in the plane, valuation of volumes and surfaces of solids of revolution. Double and Triple integrals.	
	DSC-1D:Algebra	
Sri. S. Roy Assistant professor	Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn(R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions. Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator sub group of group, examples of subgroups including the center of a group. Cosets, Index of subgroups: their definition, examples, and characterizations, Quotient groups. Definition and examples of rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n, ring of real quaternions, rings of matrices, polynomial rings, and rings of continuous functions. Subrings and ideals, Integral domains and fields, examples of fields: Zp, Q, R, and C. Field of rational functions.	
Internal Assessment: 3rd Week of May 2023		
PTM-1 st Week of June 2023		

JHARGRAM RAJ COLLEGE DEPARTMENTOFMATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-V (General) (CBCS)

Name of Faculty Member	Topics(From 28 th February 2023 to 9 th July 2023)	Topics(From 28 th February 2023 to 9 th July 2023)
	DSE-1A: Linear Algebra	DSC-2(G): Linear Algebra
Sri. A. De Assistant Professor	Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	 P Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.
Sri. S. Roy Assistant Professor	SEC-3(G):Number Theory Division algorithm, Lame's theorem, linear Diophantine equation, fundamental theorem of arithmetic, prime counting function, statement of prime number theorem, Goldbach conjecture, binary and decimal representation of integers.	 SEC-3(G):Number Theory Linear congruences, complete set of residues.Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi-function.
		 PTM-2nd week of December 2022 Internal Assessment: 1st week of December 2022 Students, Seminar-2nd week of December 2022

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2022-2023 B.Sc. Semester-VI (General) (CBCS)

Name of the Faculty Members	Topics(From 6 th February 2023 to 14 th June 2023)	
	DSE-1(G):Linear Programming	
Sri. A. De Assistant Professor	Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, Two-phase method. Big-M method and their comparison. Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual.	
Internal Assessment: 1 st Week of May 2023		
PTM(online)-2 nd Week of May 20223		